Blink: Managing Server Clusters on Intermittent Power

Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy

Department of Computer Science
University of Massachusetts, Amherst

{nksharma,sbarker,irwin,shenoy } @cs.umass.edu

Abstract

Reducing the energy footprint of data centers continues to receive
significant attention due to both its financial and environmental im-
pact. There are numerous methods that limit the impact of both
factors, such as expanding the use of renewable energy or par-
ticipating in automated demand-response programs. To take ad-
vantage of these methods, servers and applications must grace-
fully handle intermittent constraints in their power supply. In this
paper, we propose blinking—metered transitions between a high-
power active state and a low-power inactive state—as the primary
abstraction for conforming to intermittent power constraints. We
design Blink, an application-independent hardware-software plat-
form for developing and evaluating blinking applications, and de-
fine multiple types of blinking policies. We then use Blink to de-
sign BlinkCache, a blinking version of memcached, to demonstrate
the effect of blinking on an example application. Our results show
that a load-proportional blinking policy combines the advantages
of both activation and synchronous blinking for realistic Zipf-like
popularity distributions and wind/solar power signals by achiev-
ing near optimal hit rates (within 15% of an activation policy),
while also providing fairer access to the cache (within 2% of a syn-
chronous policy) for equally popular objects.

Categories and Subject Descriptors C.5.0 [Computer System Im-
plementation]: General

General Terms Design, Management, Performance

Keywords Power, Intermittent, Renewable Energy, Blink

1. Introduction

Energy-related costs have become a significant fraction of total
cost of ownership (TCO) in modern data centers. Recent esti-
mates attribute 31% of TCO to both purchasing power and build-
ing and maintaining the power distribution and cooling infrastruc-
ture [15]. Consequently, techniques for reducing the energy foot-
print of data centers continue to receive significant attention in
both industry and the research community. We categorize these
techniques broadly as being either primarily workload-driven or
power-driven. Workload-driven systems reconfigure applications
as their workload demands vary to use the least possible amount of
power to satisfy demand. Examples include consolidating load onto
a small number of servers, e.g., using request redirection [8, 17] or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5-11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0266-1/11/03. .. $10.00

VM migration, and powering down the remaining servers during
off-peak hours, or balancing load to mitigate thermal hotspots and
reduce cooling costs [3, 23, 24]. In contrast, power-driven systems
reconfigure applications as their power supply varies to achieve the
best performance possible given the power constraints.

While prior work has largely emphasized workload-driven sys-
tems, power-driven systems are becoming increasingly important.
For instance, data centers are beginning to rely on intermittent
renewable energy sources, such as solar and wind, to partially
power their operations [14, 35]. Intermittent power constraints are
also common in developing regions that experience “brownouts”
where the electric grid temporarily reduces its supply under high
load [8, 38]. Price-driven optimizations, due to either demand-
response incentives or market-based pricing, introduce intermittent
constraints as well, e.g., if multiple data centers coordinate to re-
duce power at locations with high spot prices and increase power
at locations with low spot prices [29]. Variable pricing is an impor-
tant tool for demand-side power management of future smart elec-
tric grids. The key challenge in power-driven systems is optimiz-
ing application performance in the presence of power constraints
that may vary significantly and frequently over time. Importantly,
these power and resource consumption constraints are independent
of workload demands.

In this paper, we present Blink, a new energy abstraction for
gracefully handling intermittent power constraints. Blinking ap-
plies a duty cycle to servers that controls the fraction of time they
are in the active state, e.g., by activating and deactivating them in
succession, to gracefully vary their energy footprint. For example,
a system that blinks every 30 seconds, i.e., is on for 30 seconds and
then off for 30 seconds, consumes half the energy, modulo over-
heads, of an always-on system. Blinking generalizes the extremes
of either keeping a server active (a 100% duty cycle) or inactive (a
0% duty cycle) by providing a spectrum of intermediate possibil-
ities. Blinking builds on prior work in energy-aware design. First,
several studies have shown that turning a server off when not in use
is the most effective method for saving energy in server clusters.
Second, blinking extends the PowerNap [21] concept, which advo-
cates frequent transitions to a low-power sleep state, as an effective
means of reducing idle power waste.

An application’s blinking policy decides when each node is ac-
tive or inactive at any instant based on both its workload charac-
teristics and energy constraints. Clearly, blinking impacts applica-
tion performance, since there may not always be enough energy to
power the nodes necessary to meet demand. Hence, the goal of a
blinking policy is to minimize performance degradation as power
varies. In general, application modifications are necessary to adapt
traditional server-based applications for blinking, since these appli-
cations implicitly assume always-on, or mostly-on, servers. Blink-
ing forces them to handle regular disconnections more often associ-
ated with weakly connected [36] environments, e.g., mobile, where
nodes are unreachable whenever they are off or out of range.

Facebook ——

—_
o
T

o]

'Few popular objects

/ Heavy tail of equally

(un)popular objects

y

O 1 1 1 1]
1 2000 4000 6000 8000 10000

Popularity Rank

Millions of Fans
(o]

Figure 1: The popularity of web data often exhibits a long heavy
tail of equally unpopular objects. This graph ranks the popularity
of Facebook group pages by their number of fans.

1.1 Example: BlinkCache

To demonstrate how blinking impacts a common data center ap-
plication, we explore the design of BlinkCache—a blinking ver-
sion of memcached that gracefully handles intermittent power
constraints—as a proof-of-concept example. Memcached is a dis-
tributed memory cache for storing key-value pairs that many promi-
nent Internet sites, including LiveJournal, Facebook, Flikr, Twitter,
YouTube, and others, use to improve their performance.
Memcached is a natural first application to optimize for vari-
able power constraints for two reasons. First, a memcached cluster
is energy-intensive, since it requires continuous operation of high-
memory nodes to ensure instant access to in-memory state. Second,
since memcached is performance supplement that is not necessary
for correctness, it does not preclude a constrained power source that
may offer little or no power over some time periods. A blinking
memcached cluster also exploits the increasing trend toward ele-
vating memory in the storage hierarchy, and using it as the primary
storage substrate in cloud data centers [26]. An important conse-
quence of this trend is that applications increasingly use memory
less like a cache that only stores a small set of popular objects, and
more like a storage system that also stores a long heavy tail of un-
popular objects. However, unpopular objects are not unimportant.
For Internet services that store user-generated content, the typi-
cal user is often interested in the relatively unpopular objects in the
heavy tail, since these objects represent either their personal con-
tent or the content of close friends and associates. As one example,
Figure 1 depicts a popularity distribution for Facebook group pages
in terms of their number of fans. While the figure only shows the
popularity rank of the top 10,000 pages, Facebook has over 20 mil-
lion group pages in total. Most of these pages are nearly equally un-
popular. For these equally unpopular objects, blinking nodes syn-
chronously to handle variable power constraints results in fairer ac-
cess to the cache. While fair cache access is important, maximizing
memcached’s hit rate requires prioritizing access to the most pop-
ular objects. We explore these performance tradeoffs in-depth for a
memcached cluster with intermittent power constraints.

1.2 Contributions

In designing, implementing, and evaluating BlinkCache as a proof-
of-concept example, this paper makes the following contributions.

e Make the Case for Blinking Systems. We propose blinking
systems to deal with variable power constraints in server clus-
ters. We motivate why blinking is a beneficial abstraction for
dealing with intermittent power constraints, define different
types of blinking policies, and discuss its potential impact on
arange of distributed applications.

¢ Design a Blinking Hardware/Software Platform. We design
Blink, an application-independent hardware/software platform
to develop and evaluate blinking applications. Our small-scale
prototype uses a cluster of 10 low-power motherboards con-
nected to a programmable power meter that replays custom
power traces and variable power traces from a solar and wind
energy harvesting deployment.

Design, Implement, and Evaluate BlinkCache. We use Blink
to experiment with blinking policies for BlinkCache, a vari-
ant of memcached we optimize for intermittent power con-
straints. Our hypothesis is that a load-proportional blinking pol-
icy, which keeps nodes active in proportion to the popularity of
the data they store, combined with object migration to group to-
gether objects with similar popularities, results in near optimal
cache hit rates, as well as fairness for equally unpopular ob-
jects. To validate our hypothesis, we compare the performance
of activation, synchronous, and load-proportional policies for
realistic Zipf-like popularity distributions. We show that a load-
proportional policy is significantly more fair than an optimal
activation policy for equally popular objects (4X at low power)
while achieving a comparable hit rate (over 60% at low power).

Section 2 provides an overview of blinking systems and poten-
tial blinking policies. Section 3 presents Blink’s hardware and soft-
ware architecture in detail, while Section 4 presents design alterna-
tives for BlinkCache, a blinking version of memcached. Section 5
then evaluates BlinkCache using our Blink prototype. Finally, Sec-
tion 6 discusses related work and Section 7 concludes.

2. Blink: Rationale and Overview

Today’s computing systems are not energy-proportional [6]—a key
factor that hinders data centers from effectively varying their power
consumption by controlling their utilization. Designing energy-
proportional systems is challenging, in part, since a variety of
server components, including the CPU, memory, disk, mother-
board, and power supply, now consume significant amounts of
power. Thus, any power optimization that targets only a single com-
ponent is not sufficient, since it reduces only a fraction of the total
power consumption [6, 19]. As one example, due to the power con-
sumption of non-CPU components, a modern server that uses dy-
namic voltage and frequency scaling in the CPU at low utilization
may still operate at over 50% of its peak power [5, 37]. Thus, deac-
tivating entire servers, including most of their components, remains
the most effective technique for controlling energy consumption in
server farms, especially at low power levels that necessitate operat-
ing servers well below 50% peak power on average.

However, data centers must be able to rapidly activate servers
whenever workload demand increases. PowerNap [21] proposes to
eliminate idle power waste and approximate an energy-proportional
server by rapidly transitioning the entire server between a high-
power active state and a low-power inactive state. PowerNap uses
the ACPI S3 state, which places the CPU and peripheral devices
in sleep mode but preserves DRAM memory state, to implement
inactivity. Transition latencies at millisecond-scale, or even lower,
may be possible between ACPI’s fully active SO state and its S3
state. By using S3 to emulate the inactive “off” state. ' PowerNap
is able to consume minimal energy while sleeping. Typical high-
end servers draw as much as 40x less power in S3.

Blink extends PowerNap in important ways. First, PowerNap
is a workload-driven technique that eliminates idle server power
waste—it uses rapid transitions in a workload-driven fashion to ac-
tivate each server when work arrives and deactivate it when idle.

'We use “active” and “on” interchangeably to reference ACPI’s SO state,
and inactive and “off” interchangeably to represent ACPI’s S3 state.

[Type] Model [S3 Transition Time (s) ||

Desktop Optiplex 745 13.8
Desktop Dimension 4600 12.0
Laptop Lenovo X60 11.7
Laptop Lenovo T60 9.7
Laptop Toshiba M400 9.1
Laptop | OLPC-XO (w/ NIC) 1.6
Laptop | OLPC-XO (no NIC) 0.2

Table 1: Latencies for several desktop and laptop models to perform
a complete S3 cycle (suspend and resume). Data from both [2] and
our own measurements of Blink’s OLPC-XO0.

In contrast, Blink is a power-driven technique that regulates av-
erage node power consumption independent workload demands.
Second, the PowerNap mechanism applies to each server indepen-
dently, while Blink applies to collections of servers. Blinking poli-
cies, which we formally define next, are able to capture, and po-
tentially exploit, cross-server dependencies and correlations in dis-
tributed applications. Finally, unlike workload-driven transitions,
blinking provides benefits even for the non-ideal S3 transition la-
tencies on the order of seconds that are common in practice, as we
show in Section 5.1.3. 2 Table 1 shows S3 transition latencies for a
variety of platforms, as reported in [2], with the addition of Blink’s
OLPC-X0 nodes. The latencies include both hardware transitions
as well as the time to restart the OS and reset its IP address.

DEFINITION 1. The blink state of each node i is defined by two

parameters that determine its duty cycle d;, (i) length of the ON

interval ton and (ii) length of the OFF interval t,55, such that
p— tO’!L

DEFINITION 2. A blink policy defines the blink state of each node

in a cluster, as well as a blink schedule for each node.

The blink schedule defines the clock time at which a specified
node transitions its blink state to active, which in turn dictates
the time at which the node turns on and goes off. The schedule
allows nodes to synchronize their blinking with one another, where
appropriate. For example, if node A frequently accesses disk files
stored on node B, the blink policy should specify a schedule such
that the nodes synchronize their active intervals. To illustrate how a
data center employs blinking to regulate its aggregate energy usage,
consider a scenario where the energy supply is initially plentiful
and there is sufficient workload demand for all nodes. In this case,
a feasible policy is to keep all nodes continuously on.

Next assume that the power supply drops by 10%, and hence,
the data center must reduce its aggregate energy use by 10%. There
are several blink policies that are able to satisfy this 10% drop.
In the simplest case, 10% of the nodes are turned off, while the
remaining nodes continue to stay on. Alternatively, another blink
policy may specify a duty cycle of d; = 90% for every node i.
There are also many ways to achieve a per-server duty cycle of
90% by setting different ¢,,, and ¢, intervals, e.g., ton, = 9s and
toff = lsorton, = 900ms and ¢,y = 100ms. Yet another policy
may assign different blink states to different nodes, e.g., depending
on their loads, such that aggregate usage decreases by 10%.

We refer to the first policy in our example above as an activa-
tion policy. An activation policy only varies the number of active
servers at each power level [8, 37] such that some servers are ac-
tive, while others are inactive; the energy supply dictates the size
of the active server set. In contrast, synchronous policies toggle all

2 PowerNap’s on-demand transitions show little benefit once latencies ex-
ceed 100 milliseconds [21].

nodes between the active and inactive state in tandem. In this case,
all servers are active for ¢,, seconds and then inactive for ¢,y s sec-
onds, such that total power usage over each duty cycle matches the
available power. Of course, since a synchronous policy toggles all
servers to active at the same time, it does not reduce peak power,
which has a significant impact on the cost of energy production. An
asynchronous policy may randomize the start of each node’s ac-
tive interval to decrease peak power without changing the average
power consumption across all nodes. Finally, an asymmetric policy
may blink different nodes at different rates, while ensuring the nec-
essary change in the energy footprint. For example, an asymmetric
policy may be load-proportional and choose per-node blink states
that are a function of current load.

All of the policies above are equally effective at capping the av-
erage power consumption for a variable power signal over any time
interval. However, the choice of the blink policy greatly impacts
application performance. To see why, consider two common appli-
cations: a simple cluster-based web server [8, 17] and an Hadoop
cluster [20]. An activation policy is well-suited for a cluster-based
web server where each node serves static content replicated on each
node—by turning off a subset of nodes and evenly redirecting in-
coming web requests to active servers, the application is able to
regulate its energy usage to match its supply. Since any node is able
to service any request, transitioning a subset of the nodes to the in-
active state does not pose a problem. In this case, the application
requires only minimal changes to accommodate dynamic changes
in the set of active servers.

However, an activation policy presents a problem for applica-
tions that maintain memory or disk state on specific nodes and
exhibit inter-node dependencies. In this case, deactivating nodes
will render some application-specific state unavailable. Hadoop is
one example, since Hadoop’s HDFS file system [31] replicates and
stores data chunks of each file across many different nodes to im-
prove both performance and data availability. As a result, simply
powering down some nodes for long periods is not effective, since
inactive nodes may store data necessary for a job to continue ex-
ecution [4, 16, 20]. One, potentially non-optimal, option for ad-
dressing the problem without incurring the overhead of changing
the data layout or migrating state prior to deactivating nodes is to
leverage a synchronous blinking policy, where all nodes have the
same duty cycle. Since all nodes blink between the active and inac-
tive state in tandem, all disk state is accessible during the active pe-
riods. While the synchronous policy is not necessarily optimal for
all applications and maximizes peak power demand, it does elimi-
nate the complexities of dealing with application-specific commu-
nication patterns when determining the blink schedule. However,
dealing with application-specific complexities may improve perfor-
mance: an asynchronous blinking policy may reduce costs by re-
ducing peak power or an asymmetric blinking policy may improve
performance by prioritizing nodes that store heavily-accessed data.

In general, distributed applications that store per-node state re-
quire application modifications to gracefully handle blinking, and
ensure the state is available at the proper times. However, since
intermittent power scenarios may yield little or no power during
certain periods, it is not appropriate in all application scenarios.
For instance, intermittent power is not appropriate for applica-
tions that make performance guarantees. The approach is appli-
cable in many scenarios, such as for best-effort batch jobs, in-
cluding Hadoop/MapReduce jobs, or for performance optimiza-
tions that augment an always-on infrastructure. In this paper, we
focus on the latter example by developing a version of memcached,
called BlinkCache, that gracefully handles intermittent power con-
straints via blinking. While memcached’s design explicitly avoids
the type of inter-node dependencies present in Hadoop, and other
tightly-coupled distributed applications, it is able to benefit from an

Experimental Deployment

Field Deployment

trace data
via serial port V

| |
| |
| |
| |
| Programmable }
} Power Supply | |
| |
| |
[i

DAQ Voltage
Logger i

DC Current”™”
"""""" Transducer

--- current data via USB -------
---- voltage data via USB «-------eeeseeeeenes

e A

|
! Power Low Power Low Power Low Power Low Power | !
: Manager Node Node Node Node }

Machine Cluster

Figure 2: Hardware architecture of the Blink prototype.

asymmetric load-proportional policy, as we describe in Section 4.
Additionally, nodes dedicated to memcached deployments do not
require disks. Mechanical disks pose an additional constraint for
blinking due to both performance and reliability concerns with fre-
quently spinning disks up and down [41]. The effect of power cy-
cling on the lifetime of CPUs, memory, and motherboards is an
open question; we know of no prior work that addresses the issue.

3. Blink Prototype

Blink is a combined hardware/software platform for developing
and evaluating blinking applications. This section describes our
prototype’s hardware and software architecture in detail.

3.1 Blink Hardware Platform

Blink’s current hardware platform consists of two primary com-
ponents: (i) a low-power server cluster that executes Blink-aware
applications and (ii) a variable energy source constructed using an
array of micro wind turbines and solar panels. We use renewable
energy to expose the cluster to intermittent power constraints.

3.1.1 Energy Sources

We deployed an array of two wind turbines and two solar panels to
power Blink. Each wind turbine is a SunForce Air-X micro-turbine
designed for home rooftop deployment, and rated to produce up to
400 watts in steady 28 mph winds. However, in our measurements,
each turbine generates approximately 40 watts of power on windy
days. Our solar energy source uses Kyocera polycrystalline solar
panels that are rated to produce a maximum of 65 watts at 17.4 volts
under full sunlight. Although polycrystalline panels are known
for their efficiency, our measurements show that each panel only
generates around 30 watts of power in full sunlight and much less
in cloudy conditions.

We assume blinking systems use batteries for short-term energy
storage and power buffering. Modern data centers and racks already
include UPS arrays to condition power and tolerate short-term
grid disruptions. We connect both renewable energy sources in our

0.6 1

05t

Energy (kWH)

0.3 : : : : :
12 122 124 126 128 13 132
Voltage

Figure 3: Empirically-measured battery capacity as a function of
voltage for our deep-cycle battery. We consider the battery empty
below 12V, since using it beyond this level will reduce its lifetime.

deployment to a battery array that includes two rechargeable deep-
cycle ResourcePower Marine batteries with an aggregate capacity
of 1320 watt-hours at 12V, which is capable of powering our entire
cluster continuously for over 14 hours. However, in this paper we
focus on energy-neutral operation over short time intervals, and
thus use the battery array only as a small 5-minute buffer. We
connect the energy sources to the battery pack using a TriStar
T-60 charge controller that provides over-charging circuitry. We
deployed our renewable energy sources on the roof of a campus
building in September 2009 and used a HOBO U30 data logger to
gather detailed traces of current and voltage over a period of several
months under a variety of different weather conditions.

While our energy harvesting deployment is capable of directly
powering Blink’s server cluster, to enable controlled and repeat-
able experiments we leverage two Extech programmable power
supplies. We use the programmable power supplies, instead of the
harvesting deployment, to conduct repeatable experiments by re-
playing harvesting traces, or emulating other intermittent power
constraints, to charge our battery array. °

Since the battery’s voltage level indicates its current energy
capacity, we require sensors to measure and report it. We use a data
acquisition device (DAQ) from National Instruments to facilitate
voltage measurement. As shown in Figure 2, the prototype includes
two high-precision SMOhm resistors between the battery terminals
and employs the DAQ to measure voltage across each resistor. We
then use the value to compute the instantaneous battery voltage, and
hence, capacity. Figure 3 shows the empirically-derived capacity of
our prototype’s battery as a function of its voltage level. In addition
to battery voltage, we use DC current transducers to measure the
current flowing from the energy source into the battery, and the
current flowing from the battery to the cluster. The configuration
allows Blink to accurately measure these values every second.

3.1.2 Low-power Server Cluster

Our Blink prototype uses a cluster of low-power server nodes.
Since our energy harvesting deployment is only capable of pro-
ducing 100-140 watts of power, a cluster of traditional high-power
servers, such as Xeon servers that consume roughly 5S00W each,
is not feasible. As a result, we construct our prototype from low-
power nodes that use AMD Geode processor motherboards. Each
motherboard, which we scavenge from OLPC-XO laptops, consists
of a 433 MHz AMD Geode LX CPU, 256 MB RAM, a 1GB solid-
state flash disk, and a Linksys USB Ethernet NIC. Each node runs
the Fedora Linux distribution with kernel version 2.6.25. We con-

3We are able to set the initial battery level for each experiment using a
separate charge controller in load-control mode.

Blinking Interface ”

setDutyCycle (int nodelId, int onPercentage)
setBlinkInterval (int nodeId, int interval)
syncActiveTime (int node, long currentTime)
forceSleep (int nodeId, int duration)

Table 2: Blink APIs for setting per-node blinking schedules.

[Measurement Interface i

getBatteryCapacity ()
getBatteryEnergy ()
getChargeRate (int lastInterval)
getDischargeRate (int lastInterval)
getServerLoadStats (int nodeId)

Table 3: Blink’s measurement APIs that applications use to inform
their blinking decisions.

nect our 10 node cluster together using 2 energy-efficient 8-port
Rosewill 100 Mbps switches. Each low-power node consumes a
maximum of 8.6W, and together with the switch, the 10 node clus-
ter has a total energy footprint of under 100 watts, which closely
matches the energy generated from our renewable energy sources.

Similar clusters of low-power nodes, e.g., using Intel Atom pro-
cessors, are currently being considered by data centers for energy-
efficient processing of I/O-intensive workloads [5]. Our low-power
Blink design should also scale to traditional Xeon-class servers for
appropriately sized energy sources, although, as we discuss in Sec-
tion 5, an application’s performance may differ for higher-power
nodes. An advantage of using XO motherboards is that they are
specifically optimized for rapid S3 transitions that are useful for
blinking. Further, the motherboards use only 0.1W in S3 and 8.6W
in SO at full processor and network utilization. The wide power
range in these two states combined with the relatively low power
usage in S3 makes these nodes an ideal platform for demonstrating
the efficacy of Blink’s energy optimizations.

3.2 Blink Software Architecture

Blink’s software architecture consists of an application-independent
control plane that combines a power management service with per-
node access to energy and node-level statistics. Blink-aware appli-
cations interact with the control plane using Blink APIs to regulate
their power consumption. The power management service consists
of a power manager daemon that runs on a gateway node and a
power client daemon that runs on each cluster node. The architec-
ture separates mechanism from policy by exposing a single simple
interface for applications to control blinking for each cluster node.

The power manager daemon has access to the hardware sensors,
described above, that monitor the battery voltage and current flow.
Each Blink power client also monitors host-level metrics on each
cluster node and reports them to the power manager. These metrics
include CPU utilization, network bandwidth, and the length of the
current active period. The power client exposes an internal RPC
interface to the power manager that allows it to set a node’s blinking
pattern. To set the blinking pattern, the power client uses the timer
of the node’s real-time clock (RTC) to automatically sleep and
wake up, i.e., transition back to SO, at specific intervals. Thus, the
power client is able to set repetitive active and inactive durations.
For example, the power manager may set a node to repeatedly be
active for 50 seconds and inactive for 10 seconds. In this case,
the blink interval is 60 seconds with the node being active 83%
of the time and inactive 17% of the time. We assume that nodes

synchronize clocks using a protocol such as NTP to enable policies
that coordinate blink schedules across cluster nodes.

The impact of clock synchronization is negligible for our blink
intervals at the granularity of seconds, but may become an issue
for blink intervals at the granularity of milliseconds or less. Note
that clock synchronization is not an issue for applications, such as
memcached, that do not perform inter-node communication. Tran-
sitioning between SO and S3 incurs a latency that limits the length
of the blink interval. Shorter blink intervals are preferable since
they allow each node to more closely match the available power,
more rapidly respond to changes in supply, and reduces the battery
capacity necessary for short term buffering. The XO motherboard
yields S3 sleep latencies that range from roughly 200 milliseconds
to 2 seconds depending on the set of active devices and drivers
(see Table 1). For instance, since our USB NIC driver does not im-
plement the ACPI reset_resume function, we must unload and
load its driver when transitioning to and from S3. As a result, the
latency for our experiments is near 2 seconds. Unfortunately, ineffi-
cient and incorrect device drivers are commonplace, and represent
one of the current drawbacks to blinking in practice.

The Blink control plane exposes an RPC interface to integrate
with external applications as shown in Tables 2 and 3. Applica-
tions use these APIs to monitor input/output current flow, battery
voltage, host-level metrics and control per-node blinking patterns.
Since Blink is application-independent, the prototype does not re-
port application-level metrics. In such cases, an application must
monitor itself. For instance, for some policies in our blinking ver-
sion of memcached, a proxy monitors per-key hit rates, as described
in Section 4.3.1.

4. Blinking Memcached

Memcached is a distributed in-memory cache for storing key-value
pairs that significantly reduces both the latency to access data ob-
jects and the load on persistent disk-backed storage. Memcached
has become a core component in Internet services that store vast
amounts of user-generated content, with services maintaining ded-
icated clusters with 100s to 1000s of nodes [26]. Since end users
interact with these services in real-time through web portals, low-
latency access to data is critical. High page load latencies frustrate
users and may cause them to stop generating new content [25],
which is undesirable since these services’ primary source of rev-
enue derives from their content, e.g., by selling targeted ads.

4.1 Memcached Overview

Memcached’s design uses a simple and scalable client-server archi-
tecture, where clients request a key value directly from a single can-
didate memcached server with the potential to store it. Clients use
a built-in mapping function to determine the IP address of this can-
didate server. Initial versions of memcached determined the server
using the function Hash (Key) $NumServers, while the latest
versions use the same consistent hashing approach popularized in
DHTs, such as Chord [34]. In either case, the key values randomly
map to nodes without regard to their temporal locality, i.e., popular-
ity. Since all clients use the same mapping function, they need not
communicate with other clients or servers to compute which server
to check for a given key. Likewise, Memcached servers respond to
client requests (gets and sets) without communicating with other
clients or servers. This lack of inter-node communication enables
Memcached to scale to large clusters.

Importantly, clients maintain the state of the cache, including
its consistency with persistent storage. As a result, applications
are explicitly written to use memcached by (i) checking whether
an object is resident in the cache before issuing any subsequent
queries, (ii) inserting a newly referenced object into the cache if it
is not already resident, and (iii) updating a cached object to reflect

Facebook

107
108 |
10° |
10* |
10° |
102 |
10" |
10° : : : : : :

10° 10" 102 10® 10* 10° 10% 107 10®

Popularity Rank

Number of Fans

Figure 4: The popularity rank, by number of fans, for all 20 million
public group pages on Facebook follows a Zipf-like distribution
with o = 0.6.

a corresponding update in persistent storage. Each memcached
server uses the Least Recently Used (LRU) replacement policy
to evict objects. One common example of a cached object is an
HTML fragment generated from the results of multiple queries
to a relational database and other services. Since a single HTTP
request for many Internet services can result in over 100 internal,
and potentially sequential, requests to other services [10, 26], the
cache significantly decreases the latency to generate the HTML.

4.2 Access Patterns and Performance Metrics

The popularity of web sites has long been known to follow a
Zipt-like distribution [7, 39], where the fraction of all requests for
the i-th most popular document is proportional to 1/i* for some
constant a. Previous studies [7, 39] have shown that « is typically
less than one for web site popularity. The key characteristic of a
Zipt-like distribution is its heavy tail, where a significant fraction
of requests are for relatively unpopular objects. We expect the
popularity of user-generated content for an Internet service to be
similar to the broader web, since, while some content may be
highly popular, such as a celebrity’s Facebook page, most users
are primarily interested in either their own content or the content of
close friends and associates.

As a test of our expectation, we rank all 20 million user-
generated fan pages on Facebook by their number of fans. We
use the size of each page’s fan base as a rough approximation of
the popularity of its underlying data objects. Figure 4 confirms that
the distribution is Zipf-like with o approximately 0.6. Recent work
also states that Facebook must store a significant fraction of their
data set in massive memcached cluster, i.e., on the order of 2000
nodes, to achieve high hit rates, e.g., 25% of the entire data set to
achieve a 96.5% hit rate [26]. This characteristic is common for
Zipt-like distributions with low « values, since many requests for
unpopular objects are inside the heavy tail. Thus, the distribution
roughly divides objects into two categories: the few highly popular
objects and the many relatively unpopular objects. As cache size in-
creases, it stores a significant fraction of objects that are unpopular
compared to the few popular objects, but nearly uniformly popular
compared to each other. These mega-caches resemble a separate
high-performance storage tier [26] for all data objects, rather than
a small cache for only the most popular data objects.

Before discussing different designs alternatives for BlinkCache,
we define our performance metrics. The primary cache perfor-
mance metric is hit ratio, or hit rate, which represents the percent-
age of object requests that the cache services. A higher hit rate in-
dicates both a lower average latency per request, as well as lower
load on the back-end storage system. In addition to hit rate, we

argue that fairness should be a secondary performance metric for
large memcached clusters that store many objects of equal pop-
ularity. A fair cache distributes its benefits—low average request
latency—equally across objects. Caches are usually unfair, since
their primary purpose is to achieve high hit rates by storing more
popular data at the expense of less popular data. However, fair-
ness increases in importance when there are many objects with a
similar level of popularity, as in today’s large memcached clusters
storing data that follows a Zipf-like popularity distribution. An un-
fair cache results in a wide disparity in the average access latency
for these similarly popular objects, which ultimately translates to
end-users receiving vastly different levels of performance. We use
the standard deviation of average request latency per object as our
measure of fairness. The lower the standard deviation the more fair
the policy, since this indicates that objects have average latencies
that are closer to the mean.

4.3 BlinkCache Design Alternatives

We compare variants of three basic memcached policies for vari-
able power constraints: an activation policy, a synchronous policy,
and an asymmetric load-proportional policy. In all cases, any get
request to an inactive server always registers as a cache miss, while
any set request is deferred until the node becomes active. We defer
a discussion of the implementation details using Blink to the next
section.

¢ Activation Policy. An activation policy ranks servers 1...IN
and always keeps the top M servers active, where M is the
maximum number of active servers the current power level
supports. We discuss multiple activation variants, including a
static variant that does not change the set of available servers in
each client’s built-in mapping function to reflect the current set
of active servers, and a dynamic variant that does change the set.
We also discuss a key migration variant that continuously ranks
the popularity of objects and migrates them to servers 1...N in
rank order.

Synchronous Policy. A synchronous policy keeps all servers
active for time ¢ and inactive for time 7" — ¢ for every interval
T, where ¢ is the maximum duration the current power level
supports and 7" is short enough to respond to power changes
but long enough to mitigate blink overhead. The policy does
not change the set of available servers in each client’s built-in
mapping function, since all servers are active every interval.

¢ Load-Proportional Policy. A load-proportional policy moni-
tors the aggregate popularity of objects P; that each server ¢
stores and keeps each server active for time ¢; and inactive
for time T — t; for every interval 7. The policy computes
each ¢; by distributing the available power in the same propor-
tion as the aggregate popularity P; of the servers. The load-
proportional policy also migrates similarly popular objects to
the same server.

4.3.1 Activation Policy

A straightforward approach to scaling memcached as power varies
is to activate servers when power is plentiful and deactivate servers
when power is scarce. One simple method for choosing which
servers to activate is to rank them 1.../N and activate and deactivate
them in order. Since, by default, memcached maps key values ran-
domly to servers, our policy for ranking servers and keys is random.
In this case, a static policy variant that does not change each client’s
built-in mapping function to reflect the active server set arbitrarily
favors keys that happen to map to higher ranked servers, regardless
of their popularity. As a result, requests for objects that map to
the top-ranked server will see a significantly lower average latency
than requests for objects that happen to map to the bottom-ranked

Application Server Backend (OLPC)

PHP MCD Frontend (SheevaPlug) MCD Server
server | Clont | ¥k (onpon) &

Power Client

Application Server Power Manager >< Backend (OLPC)
PHP | MCD \ MCD Server
Server Client

Battery

Figure 5: To explicitly control the mapping of keys to servers,
we interpose always-active request proxies between memcached
clients and servers. The proxies are able to monitor per-key hit rates
and migrate similarly popular objects to the same nodes.

server. One way to correct the problem is to dynamically change
the built-in client mapping function to only reflect the current set
of active servers. With constant power, dynamically changing the
mapping function will result in a higher hit rate since the most pop-
ular objects naturally shift to the current set of active servers.

Hash-based Key Mapping. Memcached recently added support
for consistent hashing to reduce the disruption from changing a
cluster’s size. The original function (Hash (Key) $NumServers)
invalidates nearly every key when adding or removing a single
server from a cluster of size n. Only the keys that have both the old
NumServers and the new NumServers as common factors do
not change mappings. The approach is clearly not scalable, since
each change, regardless of size, flushes nearly the entire cache,
which abruptly increases load on the back-end storage system, as
well as request latency, until the cache re-populates itself.

Consistent hashing, originally popularized [34] by DHTs, sig-
nificantly improves the situation, since adding or removing each
server only invalidates 1/ n*" of the keys for a cluster of size n. The
approach scales gracefully, since the percentage of keys the cache
invalidates by changing a single server in the active set decreases as
cluster size increases. However, consistent hashing is not a panacea
when power varies either frequently or significantly. For instance, if
the available power doubles, thereby doubling the number of active
servers, a consistent hashing approach will still invalidate 50% of
its resident objects. With a dynamic approach, frequent variations
in power repeatedly incur this steep invalidation penalty.

Thus, while our dynamic variant results in a higher hit rate than
a static variant under constant power, the opposite is true, due to
invalidation penalties, for power that varies frequently or signifi-
cantly. One option for eliminating invalidation penalties entirely is
to explicitly control the mapping of individual keys to servers, and
pro-actively migrate the most popular objects to the most popular
servers. Figure 5 illustrates a memcached design that interposes
an always-active proxy between memcached clients and servers to
control the mapping. In this design, clients issue requests to the
proxy, which maintains a hash table that stores the current map-
ping of keys to servers, issues requests to the appropriate back-end
server, and returns the result to the client.

Table-based Key Mapping. Since all requests pass through the
proxy, it is able to continuously monitor and sort the popularity
of objects in the background and dynamically change the server
mappings as popularities change. Note that to migrate an object the
proxy need only change its key—server mapping. After the change,
the next key request for the object will incur one cache miss on the
new server, which results in application-level code re-generating

and re-inserting the object at the new location. The proxy may ei-
ther pro-actively evict the object from the old server or simply allow
LRU replacement to evict the object. This strategy eliminates inval-
idation penalties, since popularity-based migration always places
the most popular objects on the highest-ranked servers. The design
requires no changes to either memcached clients or servers.

Deactivating lower-ranked servers invalidates objects that are
already less popular than objects on the higher-ranked active
servers, while activating additional servers grows the size of the
cache without invalidating the more popular objects that are al-
ready resident. The approach does introduce the overhead of mon-
itoring and sorting keys by popularity, as well as proxying requests
through an intermediary server. However, these overhead costs are
independent of power variations and amortized over time, rather
than imposed abruptly at each change in the power level. The proxy
approach scales to multiple proxies by allowing memcached clients
to use their original built-in mapping function to map keys to a set
of proxies instead of a set of servers, such that each proxy is re-
sponsible for a random subset of keys.

In a multi-proxy design, the proxies periodically send popularity
statistics to a central server that sorts them in the background and
distributes each proxy a new server mapping. The period between
re-mappings is a function of both how fast key popularity is chang-
ing and the number of keys in the cache, since drastic popularity
changes require re-mappings and more keys increase the time to
gather, sort, and distribute new mappings. Changes to server map-
pings need not be highly synchronized across all proxies, though,
since memcached provides no guarantees that data is present or
consistent with a back-end database. A multi-proxy design allows
the proxies to share the bandwidth and processing load of issuing
client requests to servers, while maintaining the ability to explicitly
control key mappings.

We expect a few-to-many relationship between proxies and
memcached servers, although highly-loaded memcached clusters
may require a mapping as low as one-to-one. In this case, the ar-
gument for using proxies instead of the nodes themselves mirrors
Somniloquy’s argument for using low-power, augmented network
interfaces to perform simple application functions on behalf of
sleeping nodes [2]. Another consideration for a proxy-based mi-
gration approach is the load imposed on the highest-ranked mem-
cached servers. If the highest-ranked servers become overloaded,
the re-mapping process may need to place a few less popular keys
on high-ranked nodes to ensure they are not overloaded. The tech-
nique is analogous to Popularity-based Data Concentration (PDC)
for disk arrays that must be careful not to deactivate too many disks
and then overload the remaining active disks [28].

4.3.2 Synchronous Policy

The migration-enabled activation policy, described above, ap-
proaches the optimal policy for maximizing the cache’s hit rate,
since ranking servers and mapping objects to them according to
popularity rank makes the distributed cache operate like a cen-
tralized cache that simply stores the most popular objects regard-
less of the cache’s size. We define optimal as the hit rate for a
centralized cache of the same size as the distributed Memcached
instance under the same workload. However, the policy is unfair
for servers that store similarly popular objects, since these servers
should have equal rankings. The activation policy is forced to arbi-
trarily choose a subset of these equally ranked servers to deactivate.
In this case, a synchronous policy is significantly more fair and re-
sults in nearly the same hit rate as the optimal activation policy. To
see why, consider the simple 4-node memcached cluster in Figure 6
with enough available power to currently activate half the cluster.
There is enough power to support either (i) our activation policy
with migration that keeps two nodes continuously active or (ii) a

100% On 100% On 0% On 0% On

Keyset TH | Keyset Keyset Keyset
A Power B C D
Power

=
GG

100% On 100% On 0% On ! Keyset i 0% On ! Keyset i
A dHh B ! I
(b) Lco LD
Keyset Keyset i Migrated | I Migrated |
© D 1 ! power | | !
50% On 50% On 50% On 50% On
T T
Keyset Keyset Keyset Keyset
()0 I | 1 e 3 | i
— — = —

Figure 6: Graphical depiction of a static/dynamic activation blink-
ing policy (a), an activation blinking policy with key migration (b),
and a synchronous blinking policy (c).

synchronous policy that keeps four nodes active half the time but
synchronously blinks them between the active and inactive state.

For now we assume that all objects are equally popular, and
compare the expected hit rate and standard deviation of average
latency across objects for both policies, assuming a full cache can
store all objects at full power on the 4 nodes. For the activation
policy, the hit rate is 50%, since it keeps two servers active and
these servers store 50% of the objects. Since all objects are equally
popular, migration does not significantly change the results. In
this case, the standard deviation is 47.5ms, assuming an estimate
of 5ms to access the cache and 100ms to regenerate the object
from persistent storage. For a synchronous policy, the hit rate is
also 50%, since all 4 nodes are active half the time and these
nodes store 100% of the objects. However, the synchronous policy
has a standard deviation of Oms, since all objects have a 50%
hit probability, if the access occurs when a node is active, and a
50% miss probability, if the access occurs when a node is inactive.
Rather than half the objects having a Sms average latency and half
having a 100ms average latency, as with activation, a synchronous
policy ensures an average latency of 52.5ms across all objects.

Note that the synchronous policy is ideal for a normal mem-
cached cluster with a mapping function that randomly maps keys
to servers, since the aggregate popularity of objects on each server
will always be roughly equal. Further, unlike an activation policy
that uses the dynamic mapping function, the synchronous policy
does not incur invalidation penalties and is not arbitrarily unfair to
keys on lower-ranked servers.

4.3.3 Load-Proportional Policy

A synchronous policy has the same hit rate as an activation policy
when keys have the same popularity, but is significantly more fair.
However, an activation policy with migration is capable of a signif-
icantly higher hit rate for highly skewed popularity distributions.
A proportional policy combines the advantages of both approaches
for Zipf-like distributions, where a few key values are highly pop-
ular but there is a heavy, but significant, tail of similarly unpopu-
lar key values. As with our activation policy, a proportional policy
ranks servers and uses a proxy to monitor object popularity and
migrate objects to servers in rank order. However, the policy dis-
tributes the available power to servers in the same proportion as the
aggregate popularity of their keys.

For example, assume that in our 4 server cluster after key migra-
tion the percentage of total hits that go to the first server is 70%, the
second server is 12%, the third server is 10%, and the fourth server
is 8%. If there is currently 100W of available power then the first
server ideally receives 70W, the second server 12W, the third server

I Metric [Workload | Best Policy |
Hit Rate Uniform Synchronous
Hit Rate Zipf Activation (Migration)
Fairness Uniform/Zipf Synchronous
Fairness + Hit Rate Zipf Load-Proportional

Table 4: Summary of the best policy for a given performance metric
and workload combination.

10W, and the fourth server 8W. These power levels then translate
directly to active durations over each interval 7. In practice, if the
first server’s maximum power is S0W, then it will be active the
entire interval, since its maximum power is 70W. The extra 20W
is distributed to the remaining servers proportionally. If all servers
have a maximum power of S50W, the first server receives SOW, the
second server receives 20W, i.e., 40% of the remaining S0W, the
third server receives 16.7W, and the fourth server receives 13.3W.
These power levels translate into the following active durations for
a 60 second blink interval: 60 seconds, 24 seconds, 20 seconds, and
16 seconds, respectively.

The hit rate from a proportional policy is only slightly worse
than the hit rate from the optimal activation policy. In this example,
we expect the hit rate from an activation policy to be 85% of the
maximum hit rate from a fully powered cluster, while we expect
the hit rate from a proportional policy to be 80.2%. However, the
policy is more fair to the 3 servers—12%, 10%, and 8%—with
similar popularities, since each server receives a similar total active
duration. The Zipf distribution for a large memcached cluster has
similar attributes. A few servers store highly popular objects and
will be active nearly 100% of the time, while a large majority of the
servers will store equally unpopular objects and blink in proportion
to their overall unpopularity.

4.4 Summary

Table 4 provides a summary of the best policy for each performance
metric and workload combination. In essence, an activation policy
with key migration will always have the highest hit rate. However,
for distributions with equally popular objects, the synchronous pol-
icy achieves a similar hit rate and is more fair. A load-proportional
policy combines the best attributes of both for Zipf-like distribu-
tions, which include a few popular objects but many similarly un-
popular objects.

5. Implementation and Evaluation

We implement and evaluate the BlinkCache design alternatives
from the previous section using our small-scale Blink prototype.
The purpose of our evaluation is not to maximize the performance
of our particular memcached deployment or improve on the per-
formance of the custom memcached server deployments common
in industry. Instead, our goal is to explore the effects of churn on
memcached caused by power fluctuations for different BlinkCache
designs. Our results will differ across platforms according to the
specific blink interval, CPU speed, and network latency and band-
width of the servers and the network. Since our prototype uses low-
power CPUs and motherboards, the request latencies we observe in
our prototype are not representative of those found in high perfor-
mance servers.

Each node in Blink connects to a low-power (2.4W/switch) 100
Mbps switch and runs an instance of Blink’s power client and
an unmodified memcached server. We wrote a memcached client
workload generator to issue key requests at a configurable, but
steady, rate according to either a Zipf popularity distribution, pa-
rameterized by «, or a uniform popularity distribution. As in a typ-
ical application, the workload generator fetches any data not resi-

100
80 f
60 r

40 1

% of Full Power

o L L L L L L)
0 10 20 40 60 80 100 120

Blink Interval (50 % Duty Cycle)

Figure 7: The near 2 second latency to transition into and out of S3
in our prototype discourages blinking intervals shorter than roughly
40 seconds. With a 50% duty cycle we expect to operate at 50% full
power, but with a blink interval of less than 10 seconds we operate
near 100% full power.

dent in the cache from a MySQL database and places it in the cache.
Since we assume the MySQL server provides always-available per-
sistent storage, it runs off the power grid and not variable power.
Note that for our benchmarks we take the conservative approach
of simply fetching key values directly from MySQL with a single
query, and do not imitate the sequential, multi-query nature of pro-
duction web applications. While we do not model or evaluate the
impact of workloads that include multi-get memcached requests
that issue gets for multiple keys in parallel, blinking with key mi-
gration should not impact the performance of multi-get requests for
keys with similar popularities, e.g., part of the same HTML page,
since our proxy will migrate these keys to the same server.

Unless otherwise noted, in our experiments, we use moderate-
size objects of 10 kilobytes, Facebook-like Zipf « values of 0.6, and
memcached’s consistent hashing mapping function. Each experi-
ment represents a half-hour trace, we configure each memcached
server with a 100MB cache to provide an aggregate cache size of
1GB, and we use our programmable power supply to drive each
power trace. Since each node has only 256MB of memory, we scale
our workloads appropriately for evaluation. We modify magent, a
publicly available memcached proxy, * to implement the design al-
ternatives in the previous section, including table-based key map-
ping and popularity-based key migration. Our modifications are not
complex: we added or changed only 300 lines of code to implement
all of the BlinkCache design variants from Section 3. Since all re-
quests pass through the proxy, it is able to monitor key popular-
ity. The proxy controls blinking by interacting with Blink’s power
manager, which in our setup runs on the same node, to monitor
the available power and battery level and set per-node blinking pat-
terns. We also use the proxy for experiments with memcached’s
default hash-based key mappings, rather than modifying the mem-
cached client. Since our always-on proxy is also subject to intermit-
tent power constraints, we run it on a low-power (SW) embedded
SheevaPlug with a 1.2 GHz ARM CPU and 512 MB of memory.

We first use our workload generator to benchmark the perfor-
mance of each blinking policy for both Zipf-like and uniform pop-
ularity distributions at multiple power levels with varying levels of
oscillation. We then demonstrate the performance for an example
web application—tag clouds in GlassFish—using realistic traces
from our energy harvesting deployment that have varying power
and oscillation levels.

4http://code.google.com/p/memagent /

5.1 Benchmarks

We measure the maximum power of each node, at 100% CPU and
network utilization, in SO to be 8.6W and its minimum power in
S3 to be 0.2W. We use these values in the proxy to compute the
length of active and inactive periods to cap power consumption at
a specific level. We also measure the impact of our node’s near 2
second transition latency for blink intervals 7" between 10 seconds
and 2 minutes. Figure 7 shows the results for a duty cycle of 50%.
In this case, the blinking interval must be over 40 seconds before
average power over the interval falls below 55% of the node’s
maximum power, as we expect. The result shows that on-demand
transitions that occur whenever work arrives or departs are not
practical in our prototype. Further, even blinking intervals as high
as 10 seconds impose significant power inefficiencies. As a result,
we use a blinking interval of 60 seconds for our experiments. Our
60 second blink interval is due solely to limitations in the Blink
prototype. Note that there is an opportunity to significantly reduce
blink intervals through both hardware and software optimizations.
Since server clusters do not typically leverage ACPI’s S3 state,
there has been little incentive to optimize its transition latency.

Next, we determine a baseline workload intensity for mem-
cached, since, for certain request rates and key sizes, the proxy
or the switch becomes a bottleneck. In our experiments, we use
a steady request rate (1000 get requests/sec) that is less than the
maximum request rate possible once the proxy or switch becomes
a bottleneck. Note that our results, which focus on hit rates, are
a function of the popularity of objects rather than the distribution
of request inter-arrival times. Our goal is to evaluate how blinking
affects the relative hit rates between the policies, and not the perfor-
mance limitations of our particular set of low-power components.
Figure 8 demonstrates the maximum performance, in terms of to-
tal throughput and request latency for different key values sizes,
of an unmodified memcached server, our memcached proxy, and a
MySQL server. As expected, the memcached server provides an or-
der of magnitude higher throughput and lower request latency than
MySQL. Further, our proxy implementation imposes only a mod-
est overhead to both throughput and latency, although the latency
impact of proxy-based redirections will be greater on faster CPUs
since less relative request time is spent in the OS and network. Our
subsequent experiments focus on request hit rates rather than re-
quest latencies, since latencies vary significantly across platforms
and workloads. Further, the wide disparity in latency between serv-
ing a request from memory and serving it from disk would show
a larger, and potentially unfair, advantage for a blinking system.
Thus, we consider hit rate a better metric than latency for evaluat-
ing a blinking memcached instance.

5.1.1 Activation Blinking and Thrashing

An activation policy for an unmodified version of memcached must
choose whether or not to alter the hash-based mapping function
as it activates and deactivates servers. For constant power, a dy-
namic mapping function that always reflects the currently active
set of servers should provides the best hit rate, regardless of the
popularity distribution, since applications will be able to insert the
most popular keys on one of the active servers. Figure 9 demon-
strates this point for a workload with a Zipf popularity distribution
(oo = 0.6), and shows the hit rates for both static and dynamic ac-
tivation variants at multiple constant power levels. While at high
power levels the approaches have similar hit rates, as power level
decreases, we see that the static variant incurs a higher penalty un-
der constant power. However, Figure 10 demonstrates that the op-
posite is true for highly variable power. The figure reports hit rates
for different levels of power oscillation, where the average power
for each experiment is 45% of the power necessary to run all nodes
concurrently. The z-axis indicates oscillation level as a percentage,

120 ¢ Dedicated

Proxy ==
MySQL

.

(o]
o
T

Throughput (Mbps)
w (o]
o o

o

L h

Value Size (KB)
(a) Throughput

250

Dedicated
-~ Proxy ===
§ 200 ¢ MySQL (get))/ I
£ 150}
%)
[100 B
g
3 50
0
1 10 100
Value Size (KB)
(b) Latency

Figure 8: Maximum throughput (a) and latency (b) for a dedicated memcached server, our memcached proxy, and a MySQL server. Our
proxy imposes only a modest overhead compared with a dedicated memcached server.

120 - .
Activation (Static)

100 + Activation (Dynamic) ===

Activation (Key Migration)

il a

80% 45% 20%
% of Full Power

Hit Rate (%)

Figure 9: Under constant power for a Zipf popularity distribution,
the dynamic variant of the activation policy performs better than
the static variant as power decreases. However, the activation policy
with key migration outperforms the other variants.

such that 0% oscillation holds power steady throughout the exper-
iment and N % oscillation varies power between (45 + 0.45N)%
and (45 — 0.45N)% every 5 minutes.

We see that dynamic changes in the active server set of mem-

cached’s hash-based mapping function incur an invalidation penalty.

Since the invalidation penalty does not occur when memcached
does not change the mapping function, the static variant provides
a significantly better hit rate as the oscillations increase. Although
not shown here, the difference with the original modulo approach
is much greater, since each change flushes nearly the entire cache.
The hash-based mapping function forces a choice between per-
forming well under constant power or performing well under vari-
able power. A table-based approach that uses our proxy to explicitly
map keys to servers and uses key migration to increase the prior-
ity of popular keys performs better in both scenarios. That is, the
approach does not incur invalidation penalties under continuously
variable power, or result in low hit rates under constant power, as
also shown in Figure 9 and Figure 10. Note that oscillation has
no impact on other policies, e.g. those using key migration or the
synchronous policy.

5.1.2 Synchronous Blinking and Fairness

While the activation policy with key migration results in the highest
hit rate overall, it is unfair when many servers store equally popular
objects since the policy must choose some subset of equally pop-

100 Activation (Static)

Activation (Dynamic) =
80 Activation (Key Migration)

il

Low (5%) Mid. (25%) High (50%)
Oscillation from 45% of Full Power

Hit Rate (%)

Figure 10: Under oscillating power for a Zipf popularity distribu-
tion, the static variant of the activation policy performs better than
the dynamic variant as the oscillation increases. Again, the activa-
tion policy with key migration outperforms the other variants.

ular servers to deactivate. Figure 11 quantifies the fairness of the
dynamic activation policy, the activation policy with key migration,
and the synchronous policy, as a function of standard deviation in
average per-object latency, at multiple constant power levels for a
uniform popularity distribution where all objects are equally popu-
lar. Note that for distributions where all objects are equally popular,
key migration is not necessary and is equivalent to using the static
variant of hash-based mapping.

The synchronous policy is roughly 2X more fair than the ac-
tivation policy with key migration at all power levels. While the
dynamic hash-based mapping is nearly as fair as the synchronous
policy, it has a worse hit rate, especially in high-power scenarios, as
shown in Figure 12. Thus, the synchronous policy, which is more
fair and provides lower average latency, is a better choice than any
variant of the activation policy for uniform popularity distributions.
Note that the key popularity distribution across servers in every
memcached cluster that uses a hash-based mapping function is uni-
form, since keys map to servers randomly. Thus, the synchronous
policy is the best choice for a heavily-loaded memcached cluster
that cannot tolerate the throughput penalty of using proxies.

5.1.3 Balancing Performance and Fairness

Activation with key migration results in the maximum hit rate for
skewed popularity distributions where some objects are signifi-
cantly more popular than others, while the synchronous policy re-

c 507 Synchronous
g Activation (Key Migration) ===
®© 40 r Activation (Dynamic)
>
5] L
a 30
e
5 207
2
8 10 +
n
0

80% 45% 20%
% of Full Power

Figure 11: For a uniform popularity distribution, both the syn-
chronous policy and the dynamic variant of the activation policy
are significantly more fair, i.e., lower standard deviation of average
per-object latency, than the activation policy with key migration.

120 + Synchronous s

Activation (Key Migration) ==

< 100 + Activation (Dynamic)
S
2
@
x
I

.
80% 45% 20%

% of Full Power

Figure 12: For a uniform popularity distribution, the synchronous
policy and the activation policy with key migration achieve a sim-
ilar hit rate under different power levels. Both policies achieve a
better hit rate than the dynamic variant of the activation policy.

sults in the best overall performance, in terms of both hit rate and
fairness, for uniform popularity distributions. The proportional pol-
icy combines the advantages of both and works well for Zipf-like
distributions with a few popular objects but a long tail of similarly
(un)popular objects, since the long heavy tail in isolation is simi-
lar to the uniform distribution. Figure 14 shows the hit rate for the
proportional policy, the activation policy with migration, and the
synchronous policy for a Zipf popularity distribution with o = 0.6
at different power levels. The synchronous policy performs poorly,
especially at low power levels, in this experiment, since it does not
treat popular objects different than unpopular objects.

However, the proportional policy attains nearly the same hit rate
as the activation policy at high power levels, since it also prioritizes
popular objects over unpopular objects. Even at low power levels
its hit rate is over 60% of the activation policy’s hit rate. Further, the
proportional policy is significantly more fair to the many unpopular
objects in the distribution. Figure 13 reports fairness, in terms
of the standard deviation in per-object latency, at different power
levels for the unpopular keys, i.e., keys ranked in the bottom 80th
percentile of the distribution. The activation policy’s unfairness is
nearly 4X worse at low power levels. Thus, the proportional policy
strikes a balance between performance and fairness when compared
against both the synchronous and activation policies.

50 1

c Load Proportional
g Activation (Key Migration) ===
© 40 ¢ Synchronous
>
[<5) L
a 30
e
5 20 +
2
S 10
n
80% 45% 20%

% of Full Power

Figure 13: The load-proportional policy is more fair to the unpopu-
lar objects, i.e. bottom 80% in popularity, than the activation policy
with key migration for Zip popularity distributions, especially in
low-power scenarios.

120 ¢ .

Load Proportional
100 | Activation (Key Migration) ==
Synchronous

h o

80% 45% 20%
% of Full Power

Hit Rate (%)

Figure 14: The load-proportional policy has a slightly lower hit rate
than the activation policy with key migration.

Finally, Figure 15 shows how the S3 transition overhead affects
our results at a moderate power level. The figure shows that the
overhead has only a modest effect on the load-proportional pol-
icy’s hit rate. The overhead does not affect the relative fairness of
the policies. Note that all of our previous experiments use our pro-
totype’s 2 second transition overhead. A shorter transition overhead
would improve our results, and even a longer transition would show
some, albeit lesser, benefits.

5.2 Case Study: Tag Clouds in GlassFish

While our prior experiments compare our blinking policies for dif-
ferent power and oscillation levels, we also conduct an application
case study using traces from our energy harvesting deployment.
The experiment provides a glimpse of the performance tradeofts for
realistic power signals. GlassFish is an open source Java application
server from Sun, which includes a simple example application that
reuses parts of the Java PetStore multi-tier web application, used
in prior research, e.g., [9], to create tag clouds for pets. Tag clouds
are a set of weighted tags that visually represent the most popu-
lar words on a web page. We modify the default web application
to generate HTML for per-user tag cloud pages and cache them in
memcached. The data to construct each HTML page comes from a
series of 20 sequential requests to a MySQL database.

For these experiments, we measure the latency to load user tag
cloud pages, which incorporates MySQL and HTML regeneration
latencies whenever HTML pages are not resident in the cache.

120
100
80
60
40
20
O L I I I I)
0 30 60 90 120 150 180
Time (minutes)
(a) Power

Power Supply ——

Power (watts)

—~ 500 _
9 Load Proportional ——
% Synchronous -
e 400 ¢ Activation (Key Migration) -
~— 2o¥x e,

g oo
S ; i Vo
£ 200

-

i)

] 100

o

- 0)) ‘

0 30 60 90 120 150 180
Time (minutes)
(b) Page Load Latency

Figure 16: Power signal from a combined wind/solar deployment (a) and average page load latency for that power signal (b).

100 .
Load Proportional ——

Synchronous -3 xenees
80 | Activation (Key Migration) -

2

© -

m 407 ~~~~~~~ Hemeeel Kemmeme Kemmmeey Kemmmeen

I 0 T -
0 N 5 6 7 ¢

0 1 2 3 4 5 6 7 8 9 10
S3 Transition Overhead (sec)

Figure 15: As S3 transition overhead increases, the hit rate from the
load-proportional policy decreases relative to the activation policy
with key migration for a Zipf distribution at a moderate power level.

The MySQL latency for our simple table-based data is typically
30ms per database query. While page load latency follows the
same trend as hit rate, it provides a better application-level view
of the impact of different policies. Figure 16(b) shows the average
latency to load user web pages across 40,000 users for our three
different policies—activation with key migration, proportional, and
synchronous—for a combined solar and wind trace, assuming the
popularity of each user’s tag cloud page follows a Zipf distribution
with a = 0.6. We derive the power signal, shown in Figure 16(a),
by compressing a 3-day energy harvesting trace to 3 hours.

As expected, the activation policy with key migration and the
load-proportional policy exhibit comparable page load latencies at
most points in the trace. For this trace, the load-proportional policy
is within 15% of the activation policy’s hit rate. The activation
policy is slightly better at low energy levels, since it tends to
strictly ensure that more popular content is always cached. Also as
expected, the synchronous policy tends to perform poorly across all
power levels. Also as expected, we measure the standard deviation
of page load latencies for the load-proportional policy to be within
2% to the synchronous policy for the vast majority, i.e., bottom
80%, of the equally unpopular objects.

6. Related Work

The sensor network community has studied strategies for dealing
with variable sources of renewable power, since these systems of-
ten do not have access to the power grid. However, since sensor

networks are geographically distributed, each node must harvest
its own energy, resulting in network-wide energy imbalances [11],
whereas data center nodes share a common power delivery infras-
tructure. Further, the primary performance metric for a sensor net-
work is the amount of data the network collects. As a result, much
of the energy harvesting work is not directly applicable to data cen-
ters. Similarly, mobile computing generally focuses on extending
battery life by regulating power consumption [40], rather than mod-
ulating performance to match energy production.

The increasing energy consumption of data centers [1] has led
companies to invest heavily in renewable energy sources [22, 35].
For example, the goal of Google’s RE<C initiative is to make large-
scale renewable power generation cheaper than coal-based produc-
tion. As a result, researchers have started to study how to incor-
porate renewables into a data center’s power delivery infrastruc-
ture [33]. As one example, Lee et al. [18] use request redirection to
control the carbon footprint of data centers by redirecting load to
servers powered by renewable energy sources. While not directly
related to energy harvesting, Power Routing [27] proposes shuf-
fled power delivery topologies that allow data centers to control
how much power each rack receives. While the topologies are well-
suited for delivering variable amounts of power to racks based on
aggregate demand, they are also useful for flexible routing of a vari-
able power supply. Prior research on workload-driven approaches
to improve data center energy efficiency is orthogonal to our work.
Examples include designing platforms that balance CPU and I/O
capacity [5, 32], routing requests to locations with the cheapest
energy [29], and dynamically activating and deactivating nodes as
demand rises and falls [8, 17, 37]. PowerNap’s node-level energy
proportional technique has also been viewed as a workload-driven
optimization [21]. We show that a similar technique is useful for
controlling per-node power consumption in a power-driven system.

Power capping has also been studied previously in data cen-
ters to ensure collections of nodes do not exceed a worst-case
power budget [12, 30]. However, the work assumes exceeding
the power budget is a rare transient event that does not warrant
application-specific modifications, and that traditional power man-
agement techniques, e.g., DVFS, are capable of enforcing the bud-
get. These assumptions may not hold in many scenarios with in-
termittent power constraints, as with our renewable energy power
source. Gandhi et al. cap CPU power by forcing CPU idle pe-
riods [13]. While similar, blinking focuses on capping per-node
power where the CPU is only one component of the total power
draw. Improving the energy-efficiency of storage is also a related
research area. While Memcached does not offer persistent stor-
age, our modifications for blinking adapt similar ideas from prior

storage research, such as migrating popular objects to more active
nodes [28, 41]. Additionally, power-aware caching algorithms fo-
cus on maximizing the idle time between disk accesses to reduce
disk power consumption, while our work focus on controlling the
power consumption of the cache itself [42].

Blinking introduces regulated churn into data center applica-
tions as nodes switch from the active to inactive state. Churn has
been well-studied in decentralized, self-organizing distributed hash
tables [34]. However, the type of churn experienced by DHTs is
different than the churn caused by blinking, which motivates our
different approach to the problem. In the former case, nodes arrive
and depart unexpectedly based on autonomous user behavior and
network conditions, while in the latter case, nodes switch between
the active and inactive states in a regular and controllable fashion.
Finally, RAMCloud [26] proposes using memory for low-latency
persistent storage, and cites as motivation the increasingly large
memcached clusters used in production data centers. The size of
these clusters motivates our observation that fairness for the large
number of equally unpopular objects, in addition to hit rate, is an
important performance metric.

7. Applicability of Blinking

While we apply blinking to a memcached cluster powered by re-
newable energy in this paper, we believe blinking is applicable to
other applications with intermittent power constraints. There are a
range of scenarios beyond renewable energy where imposing in-
termittent constraints may be attractive. For example, data centers
may wish to participate in automated demand-response programs
with the electric grid. Automated demand-response, which is a cor-
nerstone of a future smart electric grid, decreases power levels at
participating consumers when the electric grid is under stress in
exchange for lower power rates. Data centers are well-positioned
to benefit from automated demand-response, since servers, as op-
posed to other types of electrical appliances, already include so-
phisticated power management mechanisms and are remotely pro-
grammable. Blink simply uses these pre-existing mechanisms to
gracefully scale application performance as power varies. Addi-
tionally, data centers consume significant quantities of power, and
demand-response programs typically target large power consumers
first. Thus, addressing intermittent constraints in data centers may
contribute to a more flexible and efficient electric grid.

In addition to automated demand-response programs, data cen-
ter operators may wish to cap energy bills or power consumption
at a fixed level for a variety of reasons, which also imposes inter-
mittent power constraints. For instance, capping energy bills im-
poses variable power constraints when energy prices vary, as with
wholesale energy prices which vary at intervals as low as every 5
minutes [29]. Thus, as market prices vary, the amount of power a
fixed budget purchases will also vary. Capping power is also nec-
essary during “brownout” scenarios, more common in developing
countries, where the electric grid is not always able to fully meet
demand. Further, Ranganathan et al. [30], as well as others [12],
point out the benefits of oversubscribing a data center’s power de-
livery infrastructure, including the possibility of using dense clus-
ters of lower-cost, but higher-power, components and then capping
power to prevent damage.

Finally, we believe blinking is applicable to applications beyond
memcached. As with memcached, applying blinking will likely re-
quire application-level modifications to handle regular and peri-
odic disconnections. One particularly interesting case is leverag-
ing blinking to run distributed storage systems under intermittent
power constraints, such as in “brownout” scenarios. Persistent stor-
age presents a different problem than memcached, since there is
not an alternative always-on option to fallback on to retrieve data.
The problems memcached presents stem from its process of map-

ping keys to nodes that is sensitive to power-level changes, which
necessitate changing the active set of servers. Since distributed stor-
age systems explicitly control the mapping of data to nodes they do
not present the same problem. However, while we measure mem-
cached’s performance primarily as a function of hit rate and fair-
ness, a blinking storage system’s performance is primarily a mea-
sure of data availability, including both the latency and throughput
to access data. As a result, a blinking storage system may need to
judiciously replicate data to increase availability and ensure consis-
tency across replicas, despite regular and frequent node transitions
between the active and inactive states.

8. Conclusion

In this paper, we focus on managing server clusters running on
intermittent power. We propose blinking as the primary abstrac-
tion for handling intermittent power constraints, and define mul-
tiple types of blinking policies. We then design an application-
independent platform for developing and evaluating blinking ap-
plications, and use it to perform an in-depth study of the effects
of blinking on one particular application and power source: mem-
cached operating off renewable energy. We find that while an ac-
tivation policy with key migration results in the best hit rates, it
does not distribute the benefits of the cache equally among equally
popular objects. As in-memory caches continue grow in size, they
will store a greater fraction of equally popular objects for Zipf-
like object popularity distributions. We then propose and evaluate
an asymmetric load-proportional policy to increase fairness with-
out significantly sacrificing the cache’s hit rate. We are currently
studying how blinking applies to other types of data center applica-
tions, including distributed storage layers and data-intensive batch
systems.

Acknowledgements. We would like to thank our shepherd Thomas
Wenisch and the anonymous reviewers for their insightful com-
ments that improved this paper. This work was supported in part
by NSF grants CNS-0855128, CNS-0834243, CNS-0916577, and
EEC-0313747.

References

[1] U.S. Environmental Protection Agency. Report To Congress On
Server And Data Center Energy Efficiency. August 2nd 2007.

[2] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta.
Somniloquy: Augmenting Network Interfaces To Reduce PC Energy
Usage. In Proceedings of the Conference on Networked Systems
Design and Implementation, pages 365-380, April 2009.

[3

—

F. Ahmad and T. Vijaykumar. Joint Optimization of Idle and Cool-
ing Power in Data Centers while Maintaining Response Time. In Pro-
ceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems, pages 243-256, March 2010.

H. Amur, J. Cipar, V. Gupta, M. Kozuch, G. Ganger, and K. Schwan.

Robust and Flexible Power-Proportional Storage. In Proceedings of
the Symposium on Cloud Computing, June 2010.

D. Anderson, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A Fast Array Of Wimpy Nodes. In Proceed-
ings of the Symposium on Operating Systems Principles, pages 1-14,
October 2009.

[6] L. Barroso and U. Holzle. The Case For Energy-proportional Com-
puting. In Computer, 40(12):33-37, December 2007.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching
And Zipf-like Distributions: Evidence And Implications. In Proceed-
ings of the International Conference on Computer Communications,
pages 126-134, June 1999.

[8] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing
Energy And Server Resources In Hosting Centres. In Proceedings

[4

=

[5

=

of the Symposium on Operating Systems Principles, pages 103-116,
October 2001.

I. Cohen, J. Chase, M. Goldszmidt, T. Kelly, and J. Symons. Corre-
lating Instrumentation Data To System States: A Building Block For
Automated Diagnosis And Control. In Proceedings of the Symposium
on Operating System Design and Implementation, pages 231-234, De-
cember 2004.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall and W. Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of the
Symposium on Operating Systems Principles, pages 205-220, October
2007.

[11] K. Fan, Z. Zheng, and P. Sinha. Steady And Fair Rate Allocation For
Rechargeable Sensors In Perpetual Sensor Networks. In Proceedings
of the Conference on Embedded Networked Sensor Systems, pages
239-252, November 2008.

[12] X. Fan, W. Weber, and L. Barroso. ~Power Provisioning for a
Warehouse-Sized Computer In Proceedings of the International Sym-
posium on Computer Architecture, pages 13-23, June 2007.

[13] A. Gandhi, M. Harchol-Balter, R. Das, J. Kephart, and C. Lefurgy.
Power Capping via Forced Idleness. In Proceedings of the Workshop
on Energy-efficient Design, June 2009.

[14] P. Gupta. Google To Use Wind Energy To Power Data Centers. In
New York Times, July 20th 2010.

[15] J. Hamilton. Overall Data Center Costs. In Perspectives at
http://perspectives.mvdirona.com/. September 18, 2010.

[16] R. Kaushik and M. Bhandarkar. GreenHDFS: Towards an Energy-
Conserving Storage-Efficient, Hybrid Hadoop Compute Cluster. In
Proceedings of the USENIX Annual Technical Conference, June 2010.

[17] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, R. Katz.
NapSAC: Design And Implementation Of A Power-Proportional Web
Cluster. In Proceedings of the Workshop on Green Networking, August
2010.

[18] K. Lee, O. Bilgir, R. Bianchini, M. Martonosi and T. Nguyen Manag-
ing the Cost, Energy Consumption, and Carbon Footprint of Internet
Services. In Proceedings of the SIGMETRICS Conference, June 2010.

[19] E. Le Sueur and Gernot Heiser. Dynamic Voltage and Frequency
Scaling: The Laws of Diminishing Returns. In Proceedings of the
Workshop on Power Aware Computing and Systems, October 2010.

[20] J. Leverich and C. Kozyrakis. On The Energy (In)efficiency Of
Hadoop Clusters. In ACM SIGOPS Operating Systems Review,
44(1):61-65, January 2010.

[21] D. Meisner, B. Gold, and T. Wenisch. PowerNap: Eliminating Server
Idle Power. In Proceedings of the Conference on Architectural Support
for Programming Languages and Operating Systems, pages 205-216,
March 2009.

[22] R. Miller. Microsoft To Use Solar Panels In New Data Center. In Data
Center Knowledge, September 24th 2008.

[23] J. Moore, J. Chase, and P. Ranganathan. Weatherman: Automated,
Online, And Predictive Thermal Mapping And Management For Data
Centers. In Proceedings of the International Conference on Autonomic
Computing, pages 155-164, June 2006.

[24] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Schedul-
ing “Cool”: Temperature-Aware Resource Assignment In Data Cen-
ters. In Proceedings of the USENIX Annual Technical Conference,
April 2005.

[25] FE. Nah. A Study On Tolerable Waiting Time: How Long Are Web
Users Willing To Wait? In Behaviour and Information Technology,
23(3), May 2004.

J. Ousterhout, P. Agarwal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S.
Rumble, E. Stratmann, and R. Stutsman. The Case For RAMClouds:
Scalable High-performance Storage Entirely In DRAM. In ACM
SIGOPS Operating Systems Review, 43(5):92-105, December 2009.

S. Pelley, D. Meisner, P. Zandevakili, T. Wenisch, and J. Underwood.
Power Routing: Dynamic Power Provisioning In The Data Center. In

[9

—

[26

[27

Proceedings of the Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 231-242, March 2010.

[28] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for
Disk Array-based Servers. In Proceedings of the International Con-
ference on Supercomputing, pages 68-78, July 2004.

[29] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs.
Cutting The Electric Bill For Internet-scale Systems. In Proceedings
of the SIGCOMM Conference, pages 123-134, August 2009.

[30] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level
Power Management for Dense Blade Servers. In Proceedings of
the International Symposium on Computer Architecture, pages 66-77,
June 2006.

[31] S. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proceedings of the Symposium on Mass
Storage Systems and Technologies, pages 1-10, May 2010.

[32] S. Rivoire, M. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort:
A Balanced Energy-efficiency Benchmark. In Proceedings of the
SIGMOD Conference, pages 365-376, June 2008.

[33] C. Stewart and K. Shen. Some Joules Are More Precious Than Others:
Managing Renewable Energy In The Datacenter. In Proceedings of the
Workshop on Power-Aware Computer Systems, October 2009.

[34] 1. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service For Internet Applica-
tions. In Proceedings of the SIGCOMM Conference, pages 149-160,
August 2001.

[35] B. Stone. Google’s Next Frontier: Renewable Energy. In New York
Times, November 28th 2007.

[36] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C.
Hauser. Managing Update Conflicts In Bayou, A Weakly Connected
Replicated Storage System. In Proceedings of the Symposium on
Operating Systems Principles, pages 172-183, December 1995.

[37] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering Energy Proportionality With Non Energy-proportional
Systems: Optimizing The Ensemble. In Proceedings of the Workshop
on Power-Aware Computer Systems, San Diego, California, December
2008.

[38] A. Verma, P. De, V. Mann, T. Nayak, A. Purohit, G. Dasgupta, and R.
Kothari. BrownMap: Enforcing Power Budget In Shared Data Centers.
IBM, Technical Report RI09016, December 2009.

[39] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H.
Levy. On The Scale And Performance Of Cooperative Web Proxy
Caching. In Proceedings of the Symposium on Operating Systems
Principles, pages 16-31, December 1999.

[40] H. Zeng, C. Ellis, A. Lebeck and A. Vahdat. ECOSystem: Manag-
ing Energy As A First Class Operating System Resource. In Pro-
ceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems, pages 123-132, October 2002.

[41] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton and J. Wilkes. Hiberna-
tor: Helping Disk Arrays Sleep Through the Winter. In Proceedings
of the Symposium on Operating Systems Principles, pages 177-190,
October 2005.

[42] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton and J. Wilkes. Power-
Aware Storage Cache Management. In [EEE Transactions on Com-
puters, 54(5):587-602, May 2005.

